

Understanding Costs and Value For Collection

Sego Jackson

Chair, Policy Subcommittee

NW Product Stewardship Council

Principal Planner, Snohomish County

(425) 388-6490 sego.jackson@snoco.org

We Need To Understand...

- ... the dynamics of systems and implications of covering all costs, including collection costs, or not.
 - Impact on who can and can't collect.
 - Impact on robustness or limits to collection system and convenience of that system.
- ... the costs of services we and others provide or might provide in future EPR systems.
 - What are the full costs of providing these services?
- ... the value of services we and others provide or might provide in future EPR systems.
 - Are the services needed, and at what cost?
 - What are the alternatives?
 - What level of cost coverage is justifiable?

Washington Electronics as Example

- 260+ on-going collection sites/services
 - 12 public sector
- Service in all 39 counties
- Service in all cities with population greater than 10,000
- First year of operation over 38.5 Million lbs.
- Second year of operation over 39.5 Million lbs.
 (= about 2,200 units per day)

92% of WA residents have an E-Cycle collection site within 10 miles of home

What Is It Costing?

Before it was costing local governments \$.35+ per lb. to collect and responsibly recycle.

Now it is costing manufacturers \$.25 per lb. to collect and responsibly recycle.

If local governments/citizens paid for the 39.5 M lbs. collected at \$.35 per lb. = \$13.82 Million

Manufacturers = 39.5 M lbs. x \$.25 per lb. = \$9.88 Million

System Savings = \$3.94 M (29% less)

Are collection costs covered?

- Yes!
- Covering collection costs is the ONLY way this robust collection system could have been set up.
- For 39.5 M lbs. collected if average cost of collection is \$.08 per lb (just for instance), then someone else would have been spending \$3.16 million to finance collection costs.

Who?

What Relevance Does This Have?

- Degree of covering collection costs may vary by product.
 - Electronics retailers not interested in collecting.
 - No collection costs = no collectors
 - Paint at least in OR currently, retailers are interested.
 - No collection costs = some (enough?) collectors
 - Paint not very hazardous, should it cover higher costs related to MRW facilities?
 - Mercury lighting who will collect and at what cost?
 - Mercury is hazardous. Use of MRW facilities with more of facility costs included likely to be just.
 - Pesticides Full MRW cost coverage?

Building a Cost Model

1. Identify the sources of costs.

- Labor time of employees
- Supplies used for the program
 - Containers: Gaylords/Cardboard boxes
 - Pallets
 - Plastic wrap
- Indirect cost of operating a facility
 - Rent (or amortized capital costs) and utilities
 - Facility maintenance
 - Support staff

Building a Cost Model (cont'd)

Calculate each cost.

Labor:

Time & motion study—more later...

Supplies:

- How much do the program supplies cost?
- Divide by # of units each supply accommodates to calculate a per-unit cost.

Indirect cost:

- How much does it cost to run the facility annually?
- What portion of the cost is attributable to the program? (Pro-rata based on square footage or annual tonnages)
- Divide by annual units collected to calculate a perunit cost.

Building a Cost Model (cont'd)

3. Add it up.

The model will help you identify and calculate costs, and can be tailored to each facility's unique set up and needs.

Time & Motion Study

- Used to determine the time spent performing various collection activities.
- Activities observed, timed, and aggregated to determine average time spent collecting each material.
- The methodology used in the cost model and time & motion study can be employed when studying collection for any material type.

Time & Motion Study (cont'd)

- Material collection segregated into five categories:
 - Unloading (car to cart)
 - Shared movement (between stations)
 - Direct handling (from cart to container)
 - Bulking & Packing
 - Paperwork—Not reviewed during our study

Results: Paint Collection

Costs per Unit Collected

Labor: \$0.30

Supplies: \$0.16

Indirect: TBD*

Labor Cost by Activity

- Unloading Time
- Shared Movement Time
- Direct Handling Time
- Bulking and Packing

^{*} The indirect cost of operating the facility will likely be the greatest of these costs.

Results: Mercury Lamp Collection

Costs per Unit Collected

Labor: \$0.20

Supplies: \$0.37

Indirect: TBD*

Labor Cost by Activity

- Unloading Time
- Shared Movement Time
- Direct Handling Time
- Bulking and Packing

^{*} The indirect cost of operating the facility will likely be the greatest of these costs.

Other Information

- Paint data collected to date is based on:
 - 65 total observations, 1 day each at 2 facilities: Snohomish County, Kitsap County.
- Data can be highly variable:
 - If you make a limited number of observations.
 - Depending on facility layout and handling processes.
- Perform your own study to calculate costs specific to your facility.

For more information, please contact:

Sego Jackson

Snohomish County, WA

NW Product Stewardship Council
Chair, Policy Subcommittee
(425) 388-6490

sego.jackson@snoco.org

Francis Icasiano

Cascadia Consulting Group (206) 449-1119 francis@cascadiaconsulting.com

